Alexander Soudackov

Alexander Soudackov


Proton-Coupled Electron Transfer; Molecular Dynamics

Alexander.Soudackov@yale.edu

(203) 432-8625

Ph.D in Physics and Mathematics, 1992
Karpov Institute of Physical Chemistry, Moscow, Russia

M.S. in Chemistry, 1986
Moscow State University, Moscow, Russia

CV 2024

Google Scholar Profile

Researcher ID: A-1159-2010

Publications

Reorganization energies for interfacial proton-coupled electron transfer to a water oxidation catalyst

338. M. Kessinger, A. V. Soudackov, J. Schneider, R. E. Bangle, S. Hammes-Schiffer, and G. J. Meyer, “Reorganization energies for interfacial proton-coupled electron transfer to a water oxidation catalyst,” J. Am. Chem. Soc. 144, 20514-20524 (2022). DOI: 10.1021/jacs.2c09672

Inverse kinetic isotope effects on the oxygen reduction reaction at Pt single crystals

337.Y. Yang, R. G. Agarwal, P. Hutchison, R. Rizo, A. V. Soudackov, X. Lu, E. Herrero, J. M. Feliu, S. Hammes-Schiffer, J. M. Mayer, and H. D. Abruña, “Inverse kinetic isotope effects on the oxygen reduction reaction at Pt single crystals,” Nat. Chem. (2022). DOI: 10.1038/s41557-022-01084-y

Kinetic model for reversible radical transfer in ribonucleotide reductase

330. C. R. Reinhardt, D. Konstantinovsky, A. V. Soudackov, and S. Hammes-Schiffer, “Kinetic model for reversible radical transfer in ribonucleotide reductase,” Proc. Nat. Acad. Sci. USA 119, e2202022119 (2022). DOI: 10.1073/pnas.2202022119

Kinetic model for reversible radical transfer in ribonucleotide reductase

328. R. Reinhardt, D. Konstantinovsky, A. V. Soudackov, and S. Hammes-Schiffer, “Kinetic model for reversible radical transfer in ribonucleotide reductase,” Proc. Nat. Acad. Sci. USA (in press).

Theoretical modeling of electrochemical proton-coupled electron transfer

323. R. E. Warburton, A. V. Soudackov, and S. Hammes-Schiffer, “Theoretical modeling of electrochemical proton-coupled electron transfer,” Chem. Rev. (ASAP). DOI: 10.1021/acs.chemrev.1c00929

Investigation of the pKa of the nucleophilic O2′ of the hairpin ribozyme

314.  A. J. Veenis, P. Li, A. V. Soudackov, S. Hammes-Schiffer, and P. C. Bevilacqua, “Investigation of the pKa of the nucleophilic O2′ of the hairpin ribozyme,” J. Phys. Chem. B 125, 11869-11883 (2021). DOI: 10.1021/acs.jpcb.1c06546

Artificial neural networks as propagators in quantum dynamics

313. M. Secor, A. V. Soudackov, and S. Hammes-Schiffer, “Artificial neural networks as propagators in quantum dynamics,” J. Phys. Chem. Lett. 12, 10654-10662 (2021). DOI: 10.1021/acs.jpclett.1c03117

Multicapacitor approach to interfacial proton-coupled electron transfer thermodynamics at constant potential

311. P. Hutchison, R. E. Warburton, A. V. Soudackov, and S. Hammes-Schiffer, “Multicapacitor approach to interfacial proton-coupled electron transfer thermodynamics at constant potential,” J. Phys. Chem. C 125, 21891-21901 (2021). DOI: 10.1021/acs.jpcc.1c04464

Artificial neural networks as mappings between proton potentials, wave functions, densities, and energy levels

299. M. Secor, A. V. Soudackov, and S. Hammes-Schiffer, “Artificial neural networks as mappings between proton potentials, wave functions, densities, and energy levels,” J. Phys. Chem. Lett. 12, 2206-2212 (2021).

Theory of electrochemical proton-coupled electron transfer in diabatic vibronic representation: Application to proton discharge on metal electrodes in alkaline solution

290. Y.-C. Lam, A. V. Soudackov, and S. Hammes-Schiffer, “Theory of electrochemical proton-coupled electron transfer in diabatic vibronic representation: Application to proton discharge on metal electrodes in alkaline solution,” J. Phys. Chem. C 124, 27309-27322 (2020).