Alexander Soudackov

Alexander Soudackov


Proton-Coupled Electron Transfer; Molecular Dynamics

Alexander.Soudackov@yale.edu

(203) 432-8625

Ph.D in Physics and Mathematics, 1992
Karpov Institute of Physical Chemistry, Moscow, Russia

M.S. in Chemistry, 1986
Moscow State University, Moscow, Russia

Publications

Kinetic model for reversible radical transfer in ribonucleotide reductase

328. R. Reinhardt, D. Konstantinovsky, A. V. Soudackov, and S. Hammes-Schiffer, “Kinetic model for reversible radical transfer in ribonucleotide reductase,” Proc. Nat. Acad. Sci. USA (in press).

Theoretical modeling of electrochemical proton-coupled electron transfer

323. R. E. Warburton, A. V. Soudackov, and S. Hammes-Schiffer, “Theoretical modeling of electrochemical proton-coupled electron transfer,” Chem. Rev. (ASAP). DOI: 10.1021/acs.chemrev.1c00929

Investigation of the pKa of the nucleophilic O2′ of the hairpin ribozyme

314.  A. J. Veenis, P. Li, A. V. Soudackov, S. Hammes-Schiffer, and P. C. Bevilacqua, “Investigation of the pKa of the nucleophilic O2′ of the hairpin ribozyme,” J. Phys. Chem. B 125, 11869-11883 (2021). DOI: 10.1021/acs.jpcb.1c06546

Artificial neural networks as propagators in quantum dynamics

313. M. Secor, A. V. Soudackov, and S. Hammes-Schiffer, “Artificial neural networks as propagators in quantum dynamics,” J. Phys. Chem. Lett. 12, 10654-10662 (2021). DOI: 10.1021/acs.jpclett.1c03117

Multicapacitor approach to interfacial proton-coupled electron transfer thermodynamics at constant potential

311. P. Hutchison, R. E. Warburton, A. V. Soudackov, and S. Hammes-Schiffer, “Multicapacitor approach to interfacial proton-coupled electron transfer thermodynamics at constant potential,” J. Phys. Chem. C 125, 21891-21901 (2021). DOI: 10.1021/acs.jpcc.1c04464

Artificial neural networks as mappings between proton potentials, wave functions, densities, and energy levels

299. M. Secor, A. V. Soudackov, and S. Hammes-Schiffer, “Artificial neural networks as mappings between proton potentials, wave functions, densities, and energy levels,” J. Phys. Chem. Lett. 12, 2206-2212 (2021).

Theory of electrochemical proton-coupled electron transfer in diabatic vibronic representation: Application to proton discharge on metal electrodes in alkaline solution

290. Y.-C. Lam, A. V. Soudackov, and S. Hammes-Schiffer, “Theory of electrochemical proton-coupled electron transfer in diabatic vibronic representation: Application to proton discharge on metal electrodes in alkaline solution,” J. Phys. Chem. C 124, 27309-27322 (2020).

Theoretical study of shallow distance dependence of proton-coupled electron transfer in oligoproline metallopeptides

281. P. Li, A. V. Soudackov, B. Koronkiewicz, J. M. Mayer, and S. Hammes-Schiffer, “Theoretical study of shallow distance dependence of proton-coupled electron transfer in oligoproline metallopeptides,” J. Am. Chem. Soc. 142, 13795-13804 (2020).

Theory of proton discharge on metal electrodes: Electronically adiabatic model

254. Y.-C. Lam, A. V. Soudackov, Z. K. Goldsmith, and S. Hammes-Schiffer, “Theory of proton discharge on metal electrodes: Electronically adiabatic model,” J. Phys. Chem.123, 12335-12345 (2019).

Theoretical analysis of the inverted region in photoinduced proton-coupled electron transfer

253. Z. K. Goldsmith, A. V. Soudackov, and S. Hammes-Schiffer, “Theoretical analysis of the inverted region in photoinduced proton-coupled electron transfer,” Faraday Discuss. 216, 363-378 (2019).