Alexander Soudackov

Alexander Soudackov


Proton-Coupled Electron Transfer; Molecular Dynamics

Alexander.Soudackov@yale.edu

(203) 432-8625

Ph.D in Physics and Mathematics, 1992
Karpov Institute of Physical Chemistry, Moscow, Russia

M.S. in Chemistry, 1986
Moscow State University, Moscow, Russia

CV 2024

Google Scholar Profile

Researcher ID: A-1159-2010

Publications

Driving force dependence of rates for nonadiabatic proton and proton-coupled electron transfer: Conditions for inverted region behavior

120. S.J. Edwards, A.V. Soudackov, and S. Hammes-Schiffer, “Driving force dependence of rates for nonadiabatic proton and proton-coupled electron transfer: Conditions for inverted region behavior,” J. Phys. Chem. B 113, 14545-14548 (2009).

Photoinduced homogeneous proton-coupled electron transfer: Model study of isotope effects on reaction dynamics

119. C. Venkataraman, A.V. Soudackov, and S. Hammes-Schiffer, “Photoinduced homogeneous proton-coupled electron transfer: Model study of isotope effects on reaction dynamics,” J. Chem. Phys. 131, 154502 (2009).

Theoretical analysis of the unusual temperature dependence of the kinetic isotope effect in quinol oxidation

114. M. K. Ludlow, A.V. Soudackov, and S. Hammes-Schiffer, “Theoretical analysis of the unusual temperature dependence of the kinetic isotope effect in quinol oxidation,” J. Am. Chem. Soc. 131, 7094-7102 (2009).

Computational approach for ranking mutant enzymes according to catalytic reaction rates

113. M. Kumarasiri, G.A. Baker, A.V. Soudackov, and S. Hammes-Schiffer, “Computational approach for ranking mutant enzymes according to catalytic reaction rates,” J. Phys. Chem. B 113, 3579-3583 (2009).

Analysis of kinetic isotope effects for proton-coupled electron transfer reactions

110. S.J. Edwards, A.V. Soudackov, and S. Hammes-Schiffer, “Analysis of kinetic isotope effects for proton-coupled electron transfer reactions,” J. Phys. Chem. A 113, 2117-2126 (2009).

Implementation of umbrella integration within the framework of the empirical valence bond approach

107. D.K. Chakravorty, M. Kumarasiri, A.V. Soudackov, and S. Hammes-Schiffer, “Implementation of umbrella integration within the framework of the empirical valence bond approach,” J. Chem. Theory Comput. 4, 1974-1990 (2008).

Proton-coupled electron transfer in solution, proteins, and electrochemistry

106. S. Hammes-Schiffer and A.V. Soudackov, “Proton-coupled electron transfer in solution, proteins, and electrochemistry,” J. Phys. Chem. B 112, 14108-14123 (2008) (Centennial Feature article).

Model system-bath Hamiltonian and nonadiabatic rate constants for proton-coupled electron transfer at electrode solution interfaces

104. I. Navrotskaya, A.V. Soudackov, and S. Hammes-Schiffer, “Model system-bath Hamiltonian and nonadiabatic rate constants for proton-coupled electron transfer at electrode solution interfaces,” J. Chem. Phys. 128, 244712 (2008).

Theoretical formulation of nonadiabatic electrochemical proton-coupled electron transfer at metal-solution interfaces

102. C. Venkataraman, A.V. Soudackov, and S. Hammes-Schiffer, “Theoretical formulation of nonadiabatic electrochemical proton-coupled electron transfer at metal-solution interfaces,” J. Phys. Chem. C 112, 12386-12397 (2008).

Theoretical studies of proton-coupled electron transfer: Models and concepts relevant to bioenergetics

99. S. Hammes-Schiffer, E. Hatcher, H. Ishikita, J. H. Skone, A. V. Soudackov, “Theoretical studies of proton-coupled electron transfer: Models and concepts relevant to bioenergetics,” Coordination Chemistry Reviews252, 384-394 (2008).