Alexander Soudackov

Alexander Soudackov


Proton-Coupled Electron Transfer; Molecular Dynamics

Alexander.Soudackov@yale.edu

(203) 432-8625

Ph.D in Physics and Mathematics, 1992
Karpov Institute of Physical Chemistry, Moscow, Russia

M.S. in Chemistry, 1986
Moscow State University, Moscow, Russia

CV 2024

Google Scholar Profile

Researcher ID: A-1159-2010

Publications

Buffer-assisted proton-coupled electron transfer in a model rhenium-tyrosine complex

97. H. Ishikita, A. V. Soudackov, and S. Hammes-Schiffer, “Buffer-assisted proton-coupled electron transfer in a model rhenium-tyrosine complex,” J. Am. Chem. Soc. 129, 11146-11152 (2007).

Proton-coupled electron transfer in soybean lipoxygenase: Dynamical behavior and temperature dependence of kinetic isotope effects

93. E. Hatcher, A. V. Soudackov, and S. Hammes-Schiffer, “Proton-coupled electron transfer in soybean lipoxygenase: Dynamical behavior and temperature dependence of kinetic isotope effects,” J. Am. Chem. Soc. 129, 187-196 (2007).

Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: Implications for proton-coupled electron transfer mechanisms

90. J. H. Skone, A. V. Soudackov, and S. Hammes-Schiffer, “Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: Implications for proton-coupled electron transfer mechanisms,” J. Am. Chem. Soc. 128, 16655-16663 (2006).

Extended spin-boson model for nonadiabatic hydrogen tunneling in the condensed phase

88. Y. Ohta, A. V. Soudackov, and S. Hammes-Schiffer, “Extended spin-boson model for nonadiabatic hydrogen tunneling in the condensed phase,” J. Chem. Phys. 125, 144522 (2006).

Hydrogen bonding pathways in human dihydroorotate dehydrogenase

87. Y. A. Small, V. Guallar, A. V. Soudackov, and S. Hammes-Schiffer, “Hydrogen bonding pathways in human dihydroorotate dehydrogenase,” J. Phys. Chem. B 110, 19704-19710 (2006).

Calculation of the transition state theory rate constant for a general reaction coordinate: Application to hydride transfer in an enzyme

78. J. B. Watney, A. V. Soudackov, K. F. Wong, and S. Hammes-Schiffer, “Calculation of the transition state theory rate constant for a general reaction coordinate: Application to hydride transfer in an enzyme,” Chem. Phys. Lett. 418, 264-267 (2005).

Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions

77. E. Hatcher, A. Soudackov, S. Hammes-Schiffer, “Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions,” Chemical Physics 319, 93-100 (2005).

Nonadiabatic proton-coupled electron transfer reactions: Impact of donor-acceptor vibrations, reorganization energies, and couplings on dynamics and rates

74. E. Hatcher, A. Soudackov, and S. Hammes-Schiffer, “Nonadiabatic proton-coupled electron transfer reactions: Impact of donor-acceptor vibrations, reorganization energies, and couplings on dynamics and rates,” J. Phys. Chem. B 109 18565-18574 (2005).

Quantum and dynamical effects of proton donor-acceptor vibrational motion in nonadiabatic proton-coupled electron transfer reactions

69. A. Soudackov, E. Hatcher, and S. Hammes-Schiffer, “Quantum and dynamical effects of proton donor-acceptor vibrational motion in nonadiabatic proton-coupled electron transfer reactions,” J. Chem. Phys.122, 014505 (2005).

Proton-coupled electron transfer in soybean lipoxygenase

64. E. Hatcher, A. V. Soudackov, and S. Hammes-Schiffer, “Proton-coupled electron transfer in soybean lipoxygenase,” J. Am. Chem. Soc. 126, 5763-5775 (2004).