Nuclear-electronic orbital approach to quantization of protons in periodic electronic structure calculations

329. J. Xu, R. Zhou, Z. Tao, C. Malbon, V. Blum, S. Hammes-Schiffer, and Y. Kanai, “Nuclear-electronic orbital approach to quantization of protons in periodic electronic structure calculations,” J. Chem. Phys. (submitted).

Solvated nuclear-electronic orbital structure and dynamics

320. A. Wildman, Z. Tao, L. Zhao, S. Hammes-Schiffer, and X. Li, “Solvated nuclear-electronic orbital structure and dynamics,” J. Chem. Theory Comp. 18, 1340-1346 (2022). DOI: 10.1021/acs.jctc.1c01285

Direct dynamics with nuclear-electronic orbital density functional theory

316. Z. Tao, Q. Yu, S. Roy, and S. Hammes-Schiffer, “Direct dynamics with nuclear-electronic orbital density functional theory,” Acc. Chem. Res. 54, 4131-4141 (2021). DOI: 10.1021/acs.accounts.1c00516

Analytical gradients for nuclear-electronic orbital time-dependent density functional theory: Excited state geometry optimizations and adiabatic excitation energies

308. Z. Tao,  S. Roy, P. E. Schneider, F. Pavošević, and S. Hammes-Schiffer, “Analytical gradients for nuclear-electronic orbital time-dependent density functional theory: Excited state geometry optimizations and adiabatic excitation energies,” J. Chem. Theory Comp.17, 5110-5122 (2021) . DOI: 10.1021/acs.jctc.1c00454

Multicomponent coupled cluster singles and doubles with density fitting: Protonated water tetramers with quantized protons

298. F. Pavošević, Z. Tao, and S. Hammes-Schiffer, “Multicomponent coupled cluster singles and doubles with density fitting: Protonated water tetramers with quantized protons,” J. Phys. Chem. Lett. 12, 1631-1637 (2021).

Transition states, reaction paths, and thermochemistry using the nuclear-electronic orbital analytic Hessian

297. P. E. Schneider, Z. Tao,  F. Pavošević, E. Epifanovsky, X. Feng, and S. Hammes-Schiffer, “Transition states, reaction paths, and thermochemistry using the nuclear-electronic orbital analytic Hessian,” J. Chem. Phys. 154, 054108 (2021).

Nuclear-electronic orbital Ehrenfest dynamics

291. L. Zhao, A. Wildman, Z. Tao, P. Schneider, S. Hammes-Schiffer, and X. Li, “Nuclear-electronic orbital Ehrenfest dynamics,” J. Chem. Phys. 153, 224111 (2020).

Frequency and time domain nuclear-electronic orbital equation-of-motion coupled cluster methods: Combination bands and electronic-protonic double excitations

282. F. Pavošević, Z. Tao, T. Culpitt, L. Zhao, X. Li, and S. Hammes-Schiffer, “Frequency and time domain nuclear-electronic orbital equation-of-motion coupled cluster methods: Combination bands and electronic-protonic double excitations,” J. Phys. Chem. Lett. 11, 6435-6442 (2020).

Real-time time-dependent nuclear-electronic orbital approach: Dynamics beyond the Born-Oppenheimer approximation

275. L. Zhao, Z. Tao, F. Pavošević, A. Wildman, S. Hammes-Schiffer, and X. Li, “Real-time time-dependent nuclear-electronic orbital approach: Dynamics beyond the Born-Oppenheimer approximation,” J. Phys. Chem. Lett. 11, 4052-4058 (2020).

Multicomponent density functional theory: Including the density gradient in the electron-proton correlation functional for hydrogen and deuterium

264. Z. Tao, Y. Yang, and S. Hammes-Schiffer, “Multicomponent density functional theory: Including the density gradient in the electron-proton correlation functional for hydrogen and deuterium,” J. Chem. Phys. 151, 124102 (2019).