Alternative forms and transferability of electron-proton correlation functionals in nuclear-electronic orbital density functional theory

238. K. R. Brorsen, P. Schneider, and S. Hammes-Schiffer, “Alternative forms and transferability of electron-proton correlation functionals in nuclear-electronic orbital density functional theory,” J. Chem. Phys. 149, 044110 (2018).

Development of a practical multicomponent density functional for electron-proton correlation to produce accurate proton densities

231. Y. Yang, K. R. Brorsen, T. Culpitt, M. V. Pak, and S. Hammes-Schiffer, “Development of a practical multicomponent density functional for electron-proton correlation to produce accurate proton densities,” J. Chem. Phys. 147, 114113 (2017).

Multicomponent density functional theory: Impact of nuclear quantum effects on proton affinities and geometries

232. K. R. Brorsen, Y. Yang, and S. Hammes-Schiffer, “Multicomponent density functional theory: Impact of nuclear quantum effects on proton affinities and geometries,” J. Phys. Chem. Lett. 8, 3488-3493 (2017).

Density functional theory embedding with the orthogonality constrained basis set expansion procedure

228. T. Culpitt, K. R. Brorsen, and S. Hammes-Schiffer, “Density functional theory embedding with the orthogonality constrained basis set expansion procedure,” J. Chem. Phys. 146, 211101 (2017).

Is the accuracy of density functional theory for atomization energies and densities in bonding regions correlated?

227. K. R. Brorsen, Y. Yang, M. V. Pak, and S. Hammes-Schiffer, “Is the accuracy of density functional theory for atomization energies and densities in bonding regions correlated?” J. Phys. Chem. Lett. 8, 2076-2081 (2017).

Calculation of positron binding energies and electron-positron annihilation rates for atomic systems with the reduced explicitly correlated Hartree-Fock method within the nuclear-electronic orbitals framework

220. K. R. Brorsen, M. V. Pak, and S. Hammes-Schiffer, “Calculation of positron binding energies and electron-positron annihilation rates for atomic systems with the reduced explicitly correlated Hartree-Fock method within the nuclear-electronic orbitals framework,” J. Phys. Chem. A 121, 515-522 (2017).

Multicomponent density functional theory embedding formulation

212. T. Culpitt, K. R. Brorsen, M. V. Pak, and S. Hammes-Schiffer, “Multicomponent density functional theory embedding formulation,” J. Chem. Phys. 145, 044106 (2016).

Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems

193. K. R. Brorsen, A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, “Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems,” J. Chem. Phys. 142, 214108 (2015).

Quantum treatment of protons with the reduced explicitly correlated Hartree-Fock approach

192. A. Sirjoosingh, M. V. Pak, K. R. Brorsen, and S. Hammes-Schiffer, “Quantum treatment or protons with the reduced explicitly correlated Hartree Fock approach,” J. Chem. Phys. 142, 214107 (2015).