Computational investigation of [FeFe]-hydrogenase models: Characterization of singly and doubly protonated intermediates and mechanistic insights

181. M. T. Huynh, W. Wang, T. B. Rauchfuss, and S. Hammes-Schiffer, “Computational investigation of [FeFe]-hydrogenase models: Characterization of singly and doubly protonated intermediates and mechanistic insights,” Inorg. Chem. 53, 10301-10311 (2014).

Protonation of nickel-iron hydrogenase models proceeds after isomerization at nickel.

180. M. T. Huynh, D. Schilter, S. Hammes-Schiffer, and T. B. Rauchfuss, “Protonation of nickel-iron hydrogenase models proceeds after isomerization at nickel,” J. Am. Chem. Soc. 136, 12385-12395 (2014).

Extremely elevated room-temperature kinetic isotope effects quantify the critical role of barrier width in enzymatic C-H activation

178. S. Hu, S. C. Sharma, A. D. Scouras, A. V. Soudackov, C. A. Marcus Carr, S. Hammes-Schiffer, T. Alber, and J.P. Klinman, “Extremely elevated room-temperature kinetic isotope effects quantify the critical role of barrier width in enzymatic C-H activation,” J. Am. Chem. Soc. 136, 8157-8160 (2014).

Electrochemical solvent reorganization energies in the framework of the polarizable continuum model

176. S. Ghosh, S. Horvath, A. V. Soudackov, and S. Hammes-Schiffer, “Electrochemical solvent reorganization energies in the framework of the polarizable continuum model,” J. Chem. Theory Comput. 10, 2091-2102 (2014).

Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

174. C. A. Schwerdtfeger, A. V. Soudackov, and S. Hammes-Schiffer, “Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales,” J. Chem. Phys. 140, 034113 (2014).

Spectroscopic and computational study of a nonheme iron nitrosyl center in a biosynthetic model of nitric oxide reductase

172. S. Chakraborty, J. Reed, M. Ross, M. J. Nilges, I. D. Petrik, S. Ghosh, S. Hammes-Schiffer, J. T. Sage, Y. Zhang, C. E. Schulz, and Y. Lu, “Spectroscopic and computational study of a nonheme iron nitrosyl center in a biosynthetic model of nitric oxide reductase,” Angew. Chem. Int. Ed. 53, 2417-2421 (2014).

Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: Applications to positronic molecular systems

168. A. Sirjoosingh, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, “Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: Applications to positronic molecular systems,” J. Chem. Phys. 139, 034103 (2013).

Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: Theoretical formulation

167. A. Sirjoosingh, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, “Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: Theoretical formulation,” J. Chem. Phys.139, 034102 (2013).

Photoinduced proton-coupled electron transfer of hydrogen-bonded p-nitrophenyl-phenol-methylamine complex in solution

160. C. Ko, B. H. Solis, A. V. Soudackov, and S. Hammes-Schiffer, “Photoinduced proton-coupled electron transfer of hydrogen-bonded p-nitrophenyl-phenol-methylamine complex in solution,” J. Phys. Chem. B117, 316-325 (2013).

Nonadiabatic dynamics of photoinduced proton-coupled electron transfer: Comparison of explicit and implicit solvent simulations

156. B. Auer, A. V. Soudackov, and S. Hammes-Schiffer, “Nonadiabatic dynamics of photoinduced proton-coupled electron transfer: Comparison of explicit and implicit solvent simulations,” J. Phys. Chem. B 116, 7695-7708 (2012).