Proton-Coupled Electron Transfer

  • Proton-coupled electron transfer (PCET) reactions play a critical role in a variety of chemical and biological processes, including photosynthesis, various enzyme reactions, and energy devices such as solar cells.
  • We have developed a general theoretical formulation for PCET and have applied this theory to a wide range of experimentally studied reactions in solution, proteins, and electrochemistry.
  • We have written several reviews on PCET. 43, 106, 132, 152194
pcet_splash_resize

In this Section

More Information

  • Tutorial (PDF) / (PPT)
    PCET Tutorial
  • webPCET:
    Web site providing general information about PCET, interactice Java applets allowing users to perform calculations on model PCET systems and visualize results, and programs that are relevant to PCET and can be downloaded.

Theory

We have developed a general theoretical formulation for PCET reactions. This theory includes the quantum mechanical effects of the active electrons and transferring protons, as well as the motions of the proton donor-acceptor mode and solvent or protein environment. We have derived analytical nonadiabatic rate constant expressions in various well-defined regimes. The original formulation was based on a multistate continuum theory with fixed proton donor-acceptor distance.3035 Subsequent extensions included the dynamical effects of an explicit molecular solvent or protein environment, as well as the proton donor-acceptor vibrational motion.69, 74, 77200, 216  We have also extended this theory to electrochemical systems.102, 104, 115

In addition, we have developed diabatization schemes for generating charge-localized diabatic electron-proton vibronic states136, 144 and methods for calculating the vibronic coupling between these states.90, 136, 152, 197 We have also identified hydrogen atom transfer (HAT) and electron-proton transfer (EPT) with electronically adiabatic and nonadiabatic proton transfer, respectively,90, 136, 152, 197 and have devised quantitative diagnostics for determining whether systems are in the electronically adiabatic or nonadiabatic regime.90, 136, 152, 197

We have also developed the methodology for mixed quantum/classical molecular dynamics simulations with explicit solvent for PCET reactions.15, 18, 19, 27, 47, 74, 77  In addition, we have developed nonadiabatic dynamics methods for simulating the ultrafast nonequilibrium dynamics of photoinduced PCET reactions for model systems.119, 122, 130, 135, 147  Recently we extended these methods to enable the study of experimentally relevant molecular systems embedded in explicit solvent with mixed quantum mechanical/molecular mechanical (QM/MM) potential energy surfaces computed on-the-fly using multiconfigurational QM methods.189, 195, 205, 218

More recently, we have developed theoretical formulations for electrochemical PCET and have studied proton discharge on electrode surfaces.248, 254, 260, 290 The most general theory290 spans the adiabatic and nonadiabatic regimes and includes the effects of vibrational nonadiabaticity and solvent dynamics. Moreover, we have developed theoretical methods to compute the frequencies of vibrational probes at electrode interfaces to enable the investigation of electric fields at electrochemical interfaces.272, 305

PCET Theory Summary Tutorial [PPT]

pcet_theory_1

pcet_theory_2
pcet_electrochem_1

Applications

We have applied these theories to a wide range of chemical, biological, and electrochemical systems.33, 44, 45, 52, 53, 60, 64, 93, 97, 114, 120, 124, 139, 245, 251, 263

Artificial photosynthesis systems

We are designing PCET systems with multiple concerted proton transfers upon oxidation to transport protons in water oxidation cells.229, 243, 261, 274, 286, 294 

BLUF photoreceptor proteins

We are studying photoinduced PCET processes in BLUF photoreceptor proteins and are characterizing the resulting light-induced signaling state for transmitting long-range signals relevant to optogenetics.221,242, 247, 267, 287

PCET at interfaces

We are studying PCET at various types of solid-liquid interfaces, including graphite-conjugated catalysts, metal electrodes, and metal oxides, to understand the roles of interfacial electric fields, solvent, and applied potential.248, 272, 289, 290, 305

PCET in triads exhibiting inverted region behavior

We are investigating PCET in anthracene-phenol-pyridine triads. Our calculations have explained the experimentally observed inverted region251 and have predicted the presence of a local electron-proton transfer (LEPT) state providing an alternative relaxation pathway.269, 284

Soybean lipoxygenase

We are investigating the basis for unusually high kinetic isotope effects (KIEs) at room temperature for wild-type (KIE=80) and for mutants (KIEs up to 700), as well as their temperature dependences.6493126182213216219226, 235, 244

Research