Density functional theory treatment

Direct dynamics with nuclear-electronic orbital density functional theory

316. Z. Tao, Q. Yu, S. Roy, and S. Hammes-Schiffer, “Direct dynamics with nuclear-electronic orbital density functional theory,” Acc. Chem. Res. 54, 4131-4141 (2021). DOI: 10.1021/acs.accounts.1c00516

Analytical gradients for nuclear-electronic orbital time-dependent density functional theory: Excited state geometry optimizations and adiabatic excitation energies

308. Z. Tao,  S. Roy, P. E. Schneider, F. Pavošević, and S. Hammes-Schiffer, “Analytical gradients for nuclear-electronic orbital time-dependent density functional theory: Excited state geometry optimizations and adiabatic excitation energies,” J. Chem. Theory Comp.17, 5110-5122 (2021) . DOI: 10.1021/acs.jctc.1c00454

Density functional theory embedding with the orthogonality constrained basis set expansion procedure

228. T. Culpitt, K. R. Brorsen, and S. Hammes-Schiffer, “Density functional theory embedding with the orthogonality constrained basis set expansion procedure,” J. Chem. Phys. 146, 211101 (2017).

Is the accuracy of density functional theory for atomization energies and densities in bonding regions correlated?

227. K. R. Brorsen, Y. Yang, M. V. Pak, and S. Hammes-Schiffer, “Is the accuracy of density functional theory for atomization energies and densities in bonding regions correlated?” J. Phys. Chem. Lett. 8, 2076-2081 (2017).

Density functional theory treatment of electron correlation in the nuclear-electronic orbital approach

96. M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, “Density functional theory treatment of electron correlation in the nuclear-electronic orbital approach,” J. Phys. Chem. A 111, 4522-4526 (2007).