nuclear-electronic orbital

Nuclear-electronic orbital methods: Foundations and prospects

306. S. Hammes-Schiffer, “Nuclear-electronic orbital methods: Foundations and prospects,” J. Chem. Phys. 143, 8381-8390 (2021).

Multicomponent coupled cluster singles and doubles with density fitting: Protonated water tetramers with quantized protons

298. F. Pavošević, Z. Tao, and S. Hammes-Schiffer, “Multicomponent coupled cluster singles and doubles with density fitting: Protonated water tetramers with quantized protons,” J. Phys. Chem. Lett. 12, 1631-1637 (2021).

Transition states, reaction paths, and thermochemistry using the nuclear-electronic orbital analytic Hessian

297. P. E. Schneider, Z. Tao,  F. Pavošević, E. Epifanovsky, X. Feng, and S. Hammes-Schiffer, “Transition states, reaction paths, and thermochemistry using the nuclear-electronic orbital analytic Hessian,” J. Chem. Phys. 154, 054108 (2021).

Nuclear-electronic orbital multistate density functional theory

288. Q. Yu and S. Hammes-Schiffer, “Nuclear-electronic orbital multistate density functional theory,” J. Phys. Chem. Lett. 11, 10106-10113 (2020).

Frequency and time domain nuclear-electronic orbital equation-of-motion coupled cluster methods: Combination bands and electronic-protonic double excitations

282. F. Pavošević, Z. Tao, T. Culpitt, L. Zhao, X. Li, and S. Hammes-Schiffer, “Frequency and time domain nuclear-electronic orbital equation-of-motion coupled cluster methods: Combination bands and electronic-protonic double excitations,” J. Phys. Chem. Lett. 11, 6435-6442 (2020).

Development of nuclear basis sets for multicomponent quantum chemistry methods

280. Q. Yu, F. Pavošević, and S. Hammes-Schiffer, “Development of nuclear basis sets for multicomponent quantum chemistry methods,” J. Chem. Phys. 152, 244123 (2020).

Real-time time-dependent nuclear-electronic orbital approach: Dynamics beyond the Born-Oppenheimer approximation

275. L. Zhao, Z. Tao, F. Pavošević, A. Wildman, S. Hammes-Schiffer, and X. Li, “Real-time time-dependent nuclear-electronic orbital approach: Dynamics beyond the Born-Oppenheimer approximation,” J. Phys. Chem. Lett. 11, 4052-4058 (2020).

Multicomponent quantum chemistry: Integrating electronic and nuclear quantum effects via the nuclear-electronic orbital method

273. F.Pavošević, T. Culpitt, and S. Hammes-Schiffer, “Multicomponent quantum chemistry: Integrating electronic and nuclear quantum effects via the nuclear-electronic orbital method,” Chem. Rev. 120, 4222-4253 (2020).

Multicomponent orbital-optimized perturbation theory methods: Approaching coupled cluster accuracy at lower cost

270. F. Pavošević, B. J. G. Rousseau, and S. Hammes-Schiffer, “Multicomponent orbital-optimized perturbation theory methods: Approaching coupled cluster accuracy at lower cost,” J. Phys. Chem. Lett. 11, 1578-1583 (2020).

Molecular vibrational frequencies with multiple quantum protons within the nuclear-electronic orbital framework

266. T. Culpitt, Y. Yang, P. E. Schneider, F. Pavošević, and S. Hammes-Schiffer, “Molecular vibrational frequencies with multiple quantum protons within the nuclear-electronic orbital framework,” J. Chem. Theory Comput. 15, 6840-6849 (2019).