nuclear-electronic orbital

Nuclear-electronic orbital approach to quantization of protons in periodic electronic structure calculations

329. J. Xu, R. Zhou, Z. Tao, C. Malbon, V. Blum, S. Hammes-Schiffer, and Y. Kanai, “Nuclear-electronic orbital approach to quantization of protons in periodic electronic structure calculations,” J. Chem. Phys. (submitted).

Semiclassical real-time nuclear-electronic orbital approach for molecular polaritons: Unified theory of electronic and vibrational strong couplings

327. T. E. Li, Z. Tao, and S. Hammes-Schiffer, “Semiclassical real-time nuclear-electronic orbital approach for molecular polaritons: Unified theory of electronic and vibrational strong couplings,” J. Chem. Theory Comp. (in press). DOI: 10.1021/acs.jctc.2c00096

Quantum simulations of vibrational strong coupling via path integrals

326. T. E. Li, A. Nitzan, S. Hammes-Schiffer, and J. E. Subotnik, “Quantum simulations of vibrational strong coupling via path integrals,” J. Phys. Chem. Lett. 13, 3890-3895 (2022). DOI: 10.48550/arXiv.2203.03001

Solvated nuclear-electronic orbital structure and dynamics

320. A. Wildman, Z. Tao, L. Zhao, S. Hammes-Schiffer, and X. Li, “Solvated nuclear-electronic orbital structure and dynamics,” J. Chem. Theory Comp. 18, 1340-1346 (2022). DOI: 10.1021/acs.jctc.1c01285

Analytical gradients for nuclear-electronic orbital multistate density functional theory: Geometry optimizations and reaction paths

319. Q. Yu, P. E. Schneider, and S. Hammes-Schiffer, “Analytical gradients for nuclear-electronic orbital multistate density functional theory: Geometry optimizations and reaction paths,” J. Chem. Phys. 156, 114115 (2022). DOI: 10.1063/5.0085344

Theoretical perspectives on non-Born-Oppenheimer effects in chemistry

319. S. Hammes-Schiffer, “Theoretical perspectives on non-Born-Oppenheimer effects in chemistry,” Phil. Trans. A (in press).

Direct dynamics with nuclear-electronic orbital density functional theory

316. Z. Tao, Q. Yu, S. Roy, and S. Hammes-Schiffer, “Direct dynamics with nuclear-electronic orbital density functional theory,” Acc. Chem. Res. 54, 4131-4141 (2021). DOI: 10.1021/acs.accounts.1c00516

Analytical gradients for nuclear-electronic orbital time-dependent density functional theory: Excited state geometry optimizations and adiabatic excitation energies

308. Z. Tao,  S. Roy, P. E. Schneider, F. Pavošević, and S. Hammes-Schiffer, “Analytical gradients for nuclear-electronic orbital time-dependent density functional theory: Excited state geometry optimizations and adiabatic excitation energies,” J. Chem. Theory Comp.17, 5110-5122 (2021) . DOI: 10.1021/acs.jctc.1c00454

Nuclear-electronic orbital methods: Foundations and prospects

306. S. Hammes-Schiffer, “Nuclear-electronic orbital methods: Foundations and prospects,” J. Chem. Phys. 143, 8381-8390 (2021).

Multicomponent coupled cluster singles and doubles with density fitting: Protonated water tetramers with quantized protons

298. F. Pavošević, Z. Tao, and S. Hammes-Schiffer, “Multicomponent coupled cluster singles and doubles with density fitting: Protonated water tetramers with quantized protons,” J. Phys. Chem. Lett. 12, 1631-1637 (2021).