proton-coupled electron transfer

Glutamate mediates proton-coupled electron transfer between tyrosines 730 and 731 in Escherichia coli ribonucleotide reductase

301. C. R. Reinhardt, E. Sayfutyarova, J. Zhong, and S. Hammes-Schiffer, “Glutamate mediates proton-coupled electron transfer between tyrosines 730 and 731 in Escherichia coli ribonucleotide reductase,” J. Am. Chem. Soc. 143, 6054-6059 (2021).

The role of intact hydrogen-bond networks in multiproton-coupled electron transfer

294. W. D. Guerra, E. Odella, M. Secor, J. J. Goings, M. N. Urrutia, B. L. Wadsworth, M. Gervaldo, L. E. Sereno, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, and A. L. Moore, “The role of intact hydrogen-bond networks in multiproton-coupled electron transfer,” J. Am. Chem. Soc. 142, 21842-21851 (2020).

Theoretical study of shallow distance dependence of proton-coupled electron transfer in oligoproline metallopeptides

281. P. Li, A. V. Soudackov, B. Koronkiewicz, J. M. Mayer, and S. Hammes-Schiffer, “Theoretical study of shallow distance dependence of proton-coupled electron transfer in oligoproline metallopeptides,” J. Am. Chem. Soc. 142, 13795-13804 (2020).

Proton-coupled electron transfer from tyrosine in the interior of a de novoprotein: Mechanisms and primary proton acceptor

278. A. Nilsen-Moe, C. R. Reinhardt, S. D. Glover, L. Liang, S. Hammes-Schiffer, L. Hammarström, and C. Tommos, “Proton-coupled electron transfer from tyrosine in the interior of a de novoprotein: Mechanisms and primary proton acceptor,” J. Am. Chem. Soc. 142, 11550-11559 (2020).

Strategies for enhancing the rate constant of C—H bond cleavage by concerted proton-coupled electron transfer

263. E. Sayfutyarova, Y. C. Lam, and S. Hammes-Schiffer, “Strategies for enhancing the rate constant of C—H bond cleavage by concerted proton-coupled electron transfer,” J. Am. Chem. Soc. 141, 15183-15189 (2019).

Proton-coupled electron transfer drives long-range proton translocation in bioinspired systems

261.E. Odella, B. L. Wadsworth, S. J. Mora, J. J. Goings, M. T. Huynh, D. Gust, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, and A. L. Moore, “Proton-coupled electron transfer drives long-range proton translocation in bioinspired systems,” J. Am. Chem. Soc. 141, 14057-14061 (2019).

Electron-coupled double proton transfer in the Slr1694 BLUF photoreceptor: A multireference electronic structure study

247. E. R. Sayfutyarova, J. J. Goings, and S. Hammes-Schiffer, “Electron-coupled double proton transfer in the Slr1694 BLUF photoreceptor: A multireference electronic structure study,” J. Phys. Chem. B 123, 439-447 (2019).

Impact of mutations on the binding pocket of soybean lipoxygenase: Implications for proton-coupled electron transfer

244. P. Li, A. V. Soudackov, and S. Hammes-Schiffer, “Impact of mutations on the binding pocket of soybean lipoxygenase: Implications for proton-coupled electron transfer,” J. Phys. Chem. Lett. 96444-6449 (2018).

Controlling proton-coupled electron transfer in bio-inspired artificial photosynthetic relays

243. E. Odella, S. J. Mora, B. L. Wadsworth, M. T. Huynh, J. J. Goings, P. A. Liddell, T. L. Groy, M. Gervaldo, L. E. Sereno, D. Gust, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, and A. L. Moore, “Controlling proton-coupled electron transfer in bio-inspired artificial photosynthetic relays,” J. Am. Chem. Soc. 140, 15450-15460 (2018).