proton-coupled electron transfer

Multi PCET in symmetrically substituted benzimidazoles

312. E. Odella, M. Secor, M. Elliot, T. L. Groy, T. A. Moore, S. Hammes-Schiffer, and A. L. Moore, “Multi PCET in symmetrically substituted benzimidazoles,” Chem. Sci. 12, 12667-12675 (2021). DOI: 10.1039/D1SC03782J

Multicapacitor approach to interfacial proton-coupled electron transfer thermodynamics at constant potential

311. P. Hutchison, R. E. Warburton, A. V. Soudackov, and S. Hammes-Schiffer, “Multicapacitor approach to interfacial proton-coupled electron transfer thermodynamics at constant potential,” J. Phys. Chem. C 125, 21891-21901 (2021). DOI: 10.1021/acs.jpcc.1c04464

Proton-coupled defects impact O—H bond dissociation free energies on metal oxide surfaces

310. R. E. Warburton, J. M. Mayer, and S. Hammes-Schiffer, “Proton-coupled defects impact O—H bond dissociation free energies on metal oxide surfaces,” J. Phys. Chem. Lett. 12, 9761-9767 (2021). DOI: 10.1021/acs.jpclett.1c02837

Glutamate mediates proton-coupled electron transfer between tyrosines 730 and 731 in Escherichia coli ribonucleotide reductase

301. C. R. Reinhardt, E. Sayfutyarova, J. Zhong, and S. Hammes-Schiffer, “Glutamate mediates proton-coupled electron transfer between tyrosines 730 and 731 in Escherichia coli ribonucleotide reductase,” J. Am. Chem. Soc. 143, 6054-6059 (2021).

The role of intact hydrogen-bond networks in multiproton-coupled electron transfer

294. W. D. Guerra, E. Odella, M. Secor, J. J. Goings, M. N. Urrutia, B. L. Wadsworth, M. Gervaldo, L. E. Sereno, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, and A. L. Moore, “The role of intact hydrogen-bond networks in multiproton-coupled electron transfer,” J. Am. Chem. Soc. 142, 21842-21851 (2020).

Theoretical study of shallow distance dependence of proton-coupled electron transfer in oligoproline metallopeptides

281. P. Li, A. V. Soudackov, B. Koronkiewicz, J. M. Mayer, and S. Hammes-Schiffer, “Theoretical study of shallow distance dependence of proton-coupled electron transfer in oligoproline metallopeptides,” J. Am. Chem. Soc. 142, 13795-13804 (2020).

Proton-coupled electron transfer from tyrosine in the interior of a de novoprotein: Mechanisms and primary proton acceptor

278. A. Nilsen-Moe, C. R. Reinhardt, S. D. Glover, L. Liang, S. Hammes-Schiffer, L. Hammarström, and C. Tommos, “Proton-coupled electron transfer from tyrosine in the interior of a de novoprotein: Mechanisms and primary proton acceptor,” J. Am. Chem. Soc. 142, 11550-11559 (2020).

Strategies for enhancing the rate constant of C—H bond cleavage by concerted proton-coupled electron transfer

263. E. Sayfutyarova, Y. C. Lam, and S. Hammes-Schiffer, “Strategies for enhancing the rate constant of C—H bond cleavage by concerted proton-coupled electron transfer,” J. Am. Chem. Soc. 141, 15183-15189 (2019).

Proton-coupled electron transfer drives long-range proton translocation in bioinspired systems

261.E. Odella, B. L. Wadsworth, S. J. Mora, J. J. Goings, M. T. Huynh, D. Gust, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, and A. L. Moore, “Proton-coupled electron transfer drives long-range proton translocation in bioinspired systems,” J. Am. Chem. Soc. 141, 14057-14061 (2019).

Electron-coupled double proton transfer in the Slr1694 BLUF photoreceptor: A multireference electronic structure study

247. E. R. Sayfutyarova, J. J. Goings, and S. Hammes-Schiffer, “Electron-coupled double proton transfer in the Slr1694 BLUF photoreceptor: A multireference electronic structure study,” J. Phys. Chem. B 123, 439-447 (2019).