Soybean lipoxygenase

Impact of mutations on the binding pocket of soybean lipoxygenase: Implications for proton-coupled electron transfer

244. P. Li, A. V. Soudackov, and S. Hammes-Schiffer, “Impact of mutations on the binding pocket of soybean lipoxygenase: Implications for proton-coupled electron transfer,” J. Phys. Chem. Lett. 96444-6449 (2018).

Fundamental insights into proton-coupled electron transfer in soybean lipoxygenase from quantum mechanical/molecular mechanical free energy simulations

235. P. Li, A. V. Soudackov, and S. Hammes-Schiffer, “Fundamental insights into proton-coupled electron transfer in soybean lipoxygenase from quantum mechanical/molecular mechanical free energy simulations,” J. Am. Chem. Soc. 140, 3068-3076 (2018).

Enhanced rigidification within a double mutant of soybean lipoxygenase provides experimental support for vibronically nonadiabatic proton-coupled electron transfer models

226. S. Hu, A. V. Soudackov, S. Hammes-Schiffer, and J. P. Klinman, “Enhanced rigidification within a double mutant of soybean lipoxygenase provides experimental support for vibronically nonadiabatic proton-coupled electron transfer models,” ACS Catal. 7, 3569-3574 (2017).

13C ENDOR spectroscopy of lipoxygenase-substrate complexes reveals the structural basis for C-H activation by tunneling

219. M. Horitani, A. R. Offenbacher, C. A. M. Carr, T. Yu, V. Hoeke, G. E. Cutsail III, S. Hammes-Schiffer, J. P. Klinman, and B. M. Hoffman “13C ENDOR spectroscopy of lipoxygenase-substrate complexes reveals the structural basis for C-H activation by tunneling,” J. Am. Chem. Soc. 139, 1984-1997 (2017).

Proton-coupled electron transfer reactions: Analytical rate constants and case study of kinetic isotope effects in lipoxygenase

216. A. V. Soudackov and S. Hammes-Schiffer, “Proton-coupled electron transfer reactions: Analytical rate constants and case study of kinetic isotope effects in lipoxygenase,” Farady Discuss. 195, 171-189 (2016).

Computational insights into five- versus six-coordinate iron center in ferrous soybean lipoxygenase

214. T. Yu, A. V. Soudackov, and S. Hammes-Schiffer, “Computational insights into five- versus six-coordinate iron center in ferrous soybean lipoxygenase,” J. Phys. Chem. Lett. 7, 3429-3433 (2016).

Dependence of vibronic coupling on molecular geometry and environment: Bridging hydrogen atom transfer and electron-proton transfer

197. A. K. Harshan, T. Yu, A. V. Soudackov, and S. Hammes-Schiffer, “Dependence of vibronic coupling on molecular geometry and environment: Bridging hydrogen atom transfer and electron-proton transfer,” J. Am. Chem. Soc. 137, 13545-13555 (2015).

Probing nonadiabaticity in the proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase

182. A. V. Soudackov and S. Hammes-Schiffer, “Probing nonadiabaticity in the proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase,” J. Phys. Chem. Lett. 5, 3274-3278 (2014).

Impact of distal mutation on hydrogen transfer interface and substrate conformation in soybean lipoxygenase

126. S. J. Edwards, A. V. Soudackov, and S. Hammes-Schiffer, “Impact of distal mutation on hydrogen transfer interface and substrate conformation in soybean lipoxygenase,” J. Phys. Chem. B 114, 6653-6660 (2010).

Proton-coupled electron transfer in soybean lipoxygenase: Dynamical behavior and temperature dependence of kinetic isotope effects

93. E. Hatcher, A. V. Soudackov, and S. Hammes-Schiffer, “Proton-coupled electron transfer in soybean lipoxygenase: Dynamical behavior and temperature dependence of kinetic isotope effects,” J. Am. Chem. Soc. 129, 187-196 (2007).