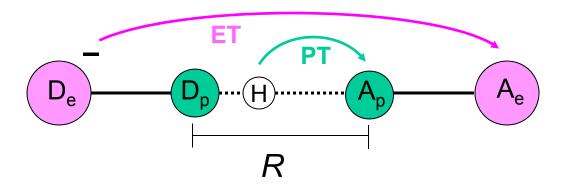
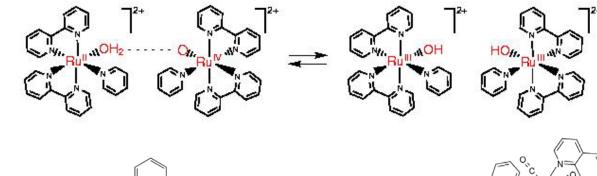

# Theory of Proton-Coupled Electron Transfer

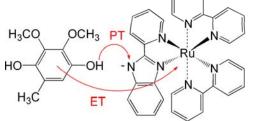
Sharon Hammes-Schiffer Pennsylvania State University

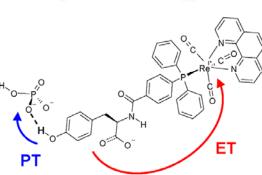


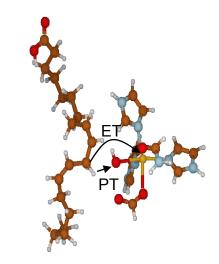

Note: Much of this information, along with more details, additional rate constant expressions, and full references to the original papers, is available in the following JPC Feature Article:

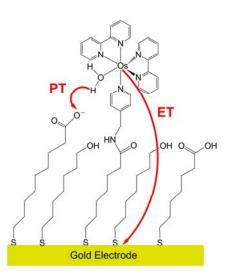
Hammes-Schiffer and Soudackov, JPC B 112, 14108 (2008)


Copyright 2009, Sharon Hammes-Schiffer, Pennsylvania State University


#### **General Definition of PCET**





- Electron and proton transfer reactions are coupled
- Electron and proton donors/acceptors can be the same or different
- Electron and proton can transfer in the same direction or in different directions
- Concerted vs. sequential PCET discussed below
- Concerted PCET is also denoted CPET and EPT
- Hydrogen atom transfer (HAT) is a subset of PCET
- Distinction between PCET and HAT discussed below


#### **Examples of Concerted PCET**

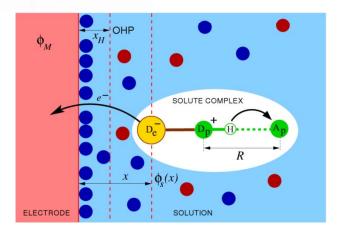








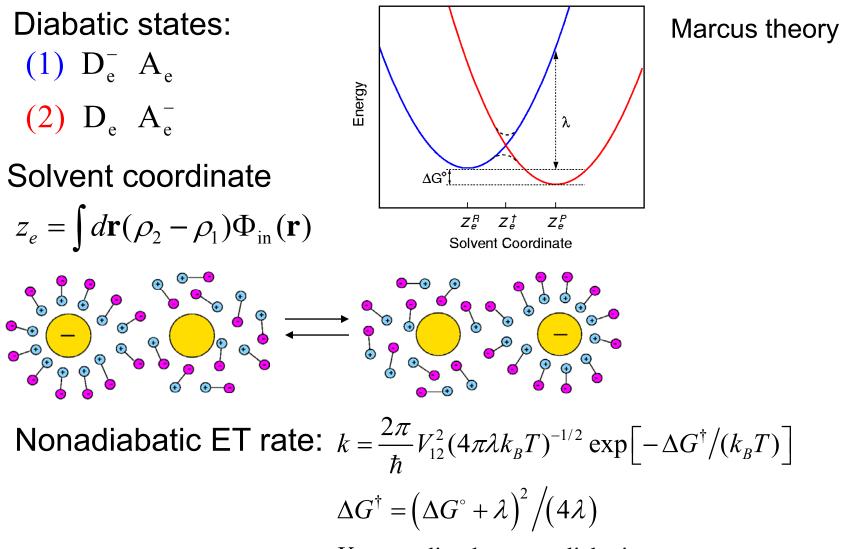



#### Importance of PCET

- Biological processes
  - photosynthesis
  - respiration
  - enzyme reactions
  - DNA

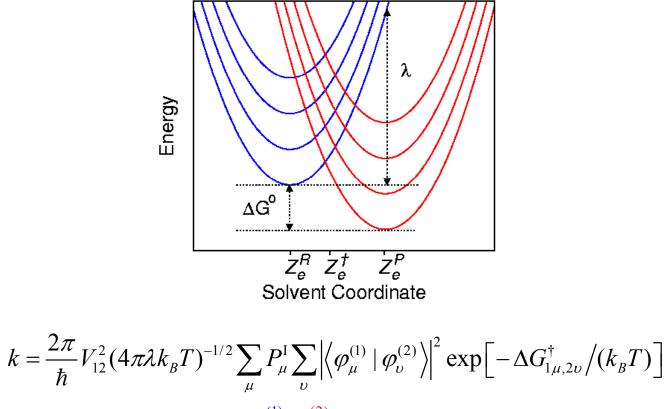


Cytochrome c oxidase  $4e^- + 4H^+ + O_2 \rightarrow 2(H_2O)$ 


- Electrochemical processes
  - fuel cells
  - solar cells
  - energy devices



#### **Theoretical Challenges of PCET**

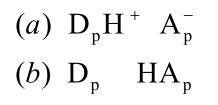

- Wide range of timescales
  - Solute electrons
  - Transferring proton(s)
  - Solute modes
  - Solvent electronic/nuclear polarization
- Quantum behavior of electrons and protons
  - Hydrogen tunneling
  - Excited electronic/vibrational states
  - Adiabatic and nonadiabatic behavior
- Complex coupling among electrons, protons, solvent

#### Single Electron Transfer

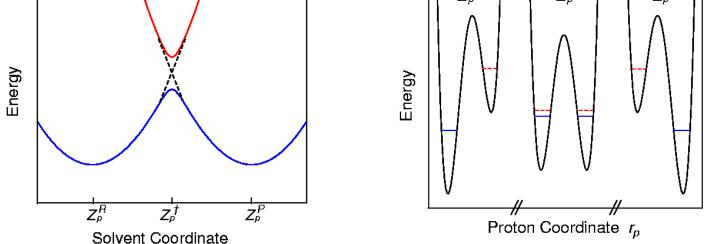


 $V_{12}$  :coupling between diabatic states

#### **Inner-Sphere Solute Modes**




vibrational wavefunctions  $\varphi_{\mu}^{(1)}, \varphi_{\nu}^{(2)}$ 


Assumes solute mode is not coupled to solvent  $\rightarrow$ Not directly applicable to PCET because proton strongly coupled to solvent

#### Single Proton Transfer

**Diabatic states:** 



Solvent coordinate  $z_{p} = \int d\mathbf{r}(\rho_{b} - \rho_{a})\Phi_{in}(\mathbf{r})$ Proton coordinate:  $r_{p}$  (QM)  $\boxed{\frac{z_{p}^{R}}{\Lambda}} = \frac{z_{p}^{r}}{\frac{z_{p}}{\Lambda}}$ 



PT typically electronically adiabatic (occurs on ground electronic state) but can be vibrationally adiabatic or nonadiabatic

#### **Proton-Coupled Electron Transfer**

Soudackov and Hammes-Schiffer, JCP 111, 4672 (1999)

• Four diabatic states: (1*a*)  $D_e^- - D_p H \cdots A_p - A_e$ 

(1b) 
$$D_e - D_p \cdots HA_p - A_e$$
  
(2a)  $D_e - D_p H \cdots A_p - A_e^-$   
(2b)  $D_e - D_p \cdots HA_p^+ - A_e^-$ 

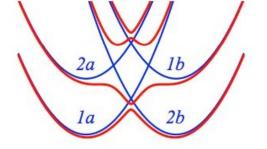
• Free energy surfaces depend on 2 collective solvent coordinates  $z_p, z_e$ 

PT 
$$(1a) \rightarrow (1b)$$
:  $z_p = \int d\mathbf{r} (\rho_{1b} - \rho_{1a}) \Phi_{in}(\mathbf{r})$   
ET  $(1a) \rightarrow (2a)$ :  $z_e = \int d\mathbf{r} (\rho_{2a} - \rho_{1a}) \Phi_{in}(\mathbf{r})$ 

Extend to N charge transfer reactions with 2<sup>N</sup> states and N collective solvent coordinates

#### Sequential vs. Concerted PCET

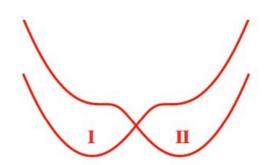
- (1a)  $D_e^- D_p^+ D_p^- H \cdots A_p^- A_e^-$ (1b)  $D_e^- - D_p^- \cdots H A_p^+ - A_e^-$ (2a)  $D_e^- - D_p^- H \cdots A_p^- - A_e^-$ (2b)  $D_e^- - D_p^- \cdots H A_p^+ - A_e^-$
- Sequential: involves stable intermediate from PT or ET PTET:  $1a \rightarrow 1b \rightarrow 2b$ ETPT:  $1a \rightarrow 2a \rightarrow 2b$
- Concerted: does not involve a stable intermediate EPT:  $1a \rightarrow 2b$
- Mechanism is determined by relative energies of diabatic states and couplings between them
- 1b and 2a much higher in energy  $\rightarrow$  concerted EPT


#### **Reactant and Product Diabatic States**

Remaining slides focus on "concerted" PCET: describe in terms of Reactant  $\rightarrow$  Product

- Reactant diabatic state (I)
  - electron localized on donor D<sub>e</sub>
  - mixture of 1a and 1b states
- Product diabatic state (II)
  - electron localized on acceptor A<sub>e</sub>
  - mixture of 2*a* and 2*b* states

Typically large coupling between *a* and *b* PT states and smaller coupling between 1 and 2 ET states


#### Diabatic vs. Adiabatic Electronic States



1b

4 diabatic states: 1a, 1b, 2a, 2b
4 adiabatic states:
Diagonalize 4×4 Hamiltonian matrix in basis of 4 diabatic states
Typically highest 2 states can be neglected

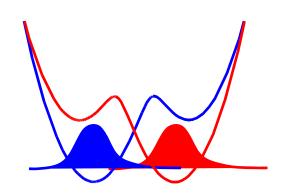
- 2 pairs of diabatic states: 1*a*/1b, 2a/2b
  2 pairs of adiabatic states:
- Block diagonalize 1a/1b, 2a/2b blocks
   Typically excited states much higher
   in energy and can be neglected



2a

2b

2 ground adiabatic states from block diagonalization above: Reactant (I) and Product (II) diabatic states

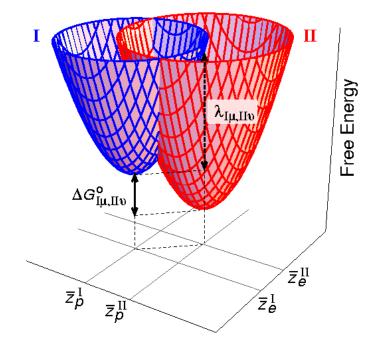

for overall PCET reaction

#### **Electron-Proton Vibronic States**

#### H treated quantum mechanically

Calculate proton vibrational states for electronic states I and II

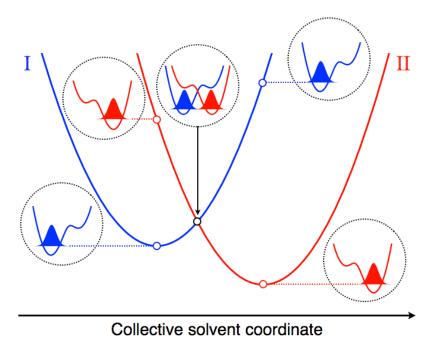
- electronic states:  $\Psi_{I}(\mathbf{r}_{e},\mathbf{r}_{p}), \Psi_{II}(\mathbf{r}_{e},\mathbf{r}_{p})$
- proton vibrational states:  $\phi_{I\mu}(\mathbf{r}_p), \dot{\phi}_{II\nu}(\mathbf{r}_p)$




Reactant vibronic states:  $\Phi^{I}(\mathbf{r}_{e},\mathbf{r}_{p}) = \Psi_{I}(\mathbf{r}_{e},\mathbf{r}_{p}) \phi_{I\mu}(\mathbf{r}_{p})$ Product vibronic states:  $\Phi^{II}(\mathbf{r}_{e},\mathbf{r}_{p}) = \Psi_{II}(\mathbf{r}_{e},\mathbf{r}_{p}) \phi_{II\nu}(\mathbf{r}_{p})$ 

Coupling between reactant and product vibronic states typically much smaller than thermal energy because of small overlap  $\rightarrow$  Describe reactions in terms of nonadiabatic transitions between reactant and product vibronic states

Vibronic states depend parametrically on other nuclear coords


#### 2D Vibronic Free Energy Surfaces

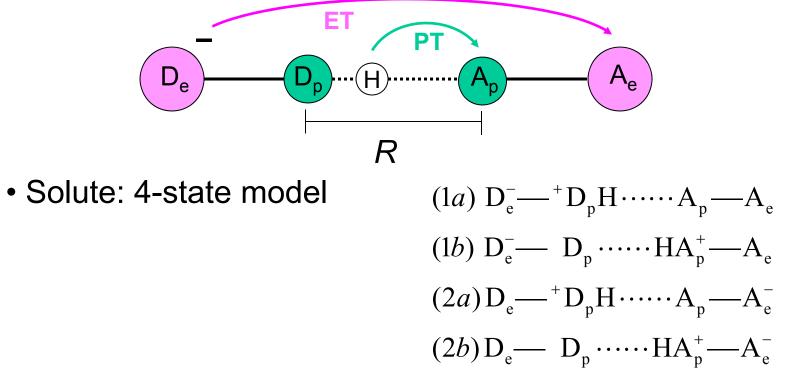


Reactant (1a/1b)D-AProduct (2a/2b)DA-

- Multistate continuum theory: free energy surfaces depend on 2 collective solvent coordinates,  $z_p$  (PT) and  $z_e$  (ET)
- Mixed electronic-proton vibrational (vibronic) surfaces
- Two sets of stacked paraboloids corresponding to different proton vibrational states for each electronic state

# **One-Dimensional Slices**

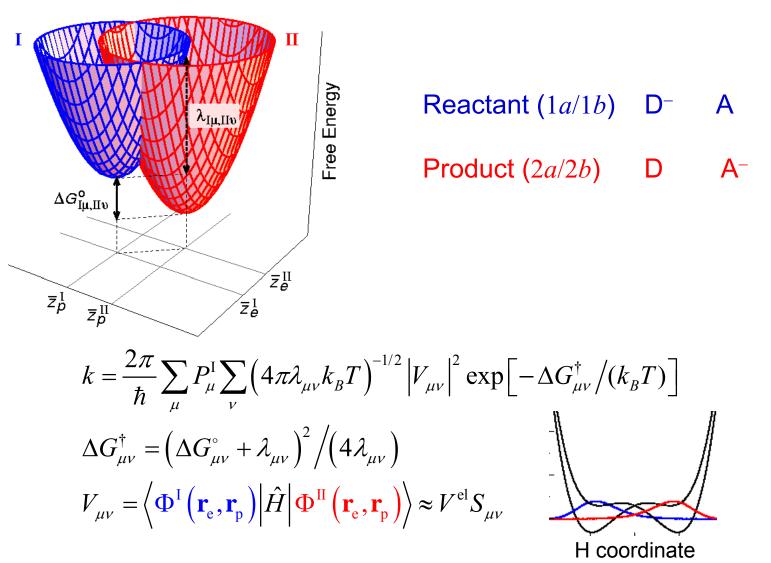



- Shape of proton potentials not significantly impacted by solvent coordinate in this range
- Relative energies of reactant and product proton potentials strongly impacted by solvent coordinate

#### Mechanism:

- 1. System starts in thermal equilibrium on reactant surface
- 2. Reorganization of solvent environment leads to crossing
- 3. Nonadiabatic transition to product surface occurs with probability proportional to square of vibronic coupling
- 4. Relaxation to thermal equilibrium on product surface

#### **Overview of Theory for PCET**

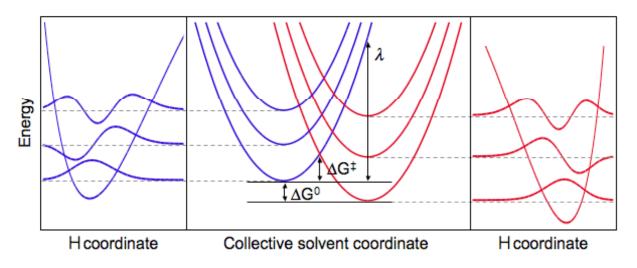

Hammes-Schiffer, Acc. Chem. Res. 34, 273 (2001)



- H nucleus: quantum mechanical wavefunction
- Solvent/protein: dielectric continuum or explicit molecules
- Typically nonadiabatic due to small coupling
- Nonadiabatic rate expressions derived from Golden Rule

# **PCET Rate Expression**

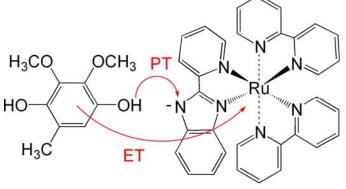
Soudackov and Hammes-Schiffer, JCP 113, 2385 (2000)




#### **Excited Vibronic States**

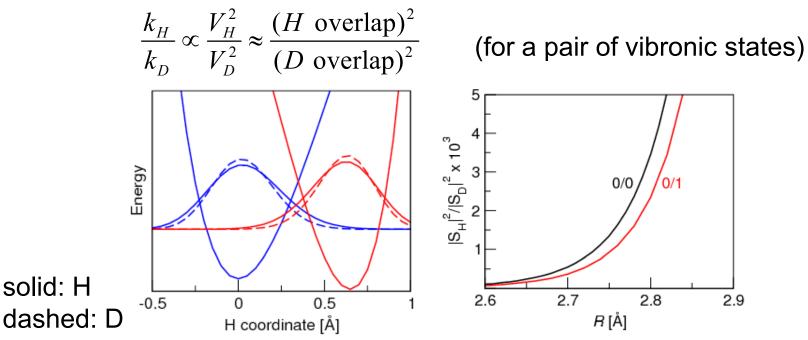
$$k = \frac{2\pi}{\hbar} \sum_{\mu} P_{\mu}^{\mathrm{I}} \sum_{\nu} \left( 4\pi \lambda_{\mu\nu} k_{B} T \right)^{-1/2} \left| V_{\mu\nu} \right|^{2} \exp\left[ -\Delta G_{\mu\nu}^{\dagger} / (k_{B} T) \right]$$

Relative contributions from excited vibronic states determined from balance of factors (different for H and D, depends on T)


- Boltzmann probability of reactant state
- Free energy barrier
- Vibronic couplings (overlaps)

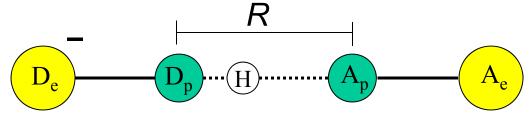


#### Proton Donor-Acceptor Motion R $D_e$ $D_p$ R $A_p$ $A_e$


- *R* is distance between proton donor and acceptor atoms
- *R*-mode corresponds to the change in the distance *R*, typically at a hydrogen-bonding interface
- *R*-mode can be strongly influenced by other solute nuclei, viewed as the "effective" proton donor-acceptor mode
- PCET rate is much more sensitive to R than to electron donor-acceptor distance because of mass and length scales for PT compared to ET

For this PCET reaction, *R* is distance between donor O and acceptor N in PT reaction




# Role of H Wavefunction Overlap $P_{e}$ $P_{e}$ $P_{e}$ $P_{e}$ $P_{e}$ $P_{e}$ $P_{e}$ $P_{e}$ $P_{e}$ $P_{e}$

- Rate decreases as overlap decreases (as *R* increases)  $k_H \propto V_H^2 \propto (H \text{ overlap})^2$
- KIE increases as overlap decreases (as R increases)



### **Include Proton Donor-Acceptor Motion**

Soudackov, Hatcher, SHS, JCP 122, 014505 (2005)



- Vibronic coupling (overlap) depends strongly on R
- Approximate vibronic coupling as

$$V_{\mu\nu}(R) \approx V^{\text{el}} S^{0}_{\mu\nu} \exp\left[-\alpha_{\mu\nu}\left(R-R_{\text{eq}}\right)
ight]$$
  
 $V^{\text{el}}:$  electronic coupling  
 $S^{0}_{\mu\nu}:$  proton wavefunction overlap at  $R_{\text{eq}}$   
 $R_{\text{eq}}:$  equilibrium  $R$  value

- Derived dynamical rate constant with quantum *R*-mode and explicit solvent
- Derived approximate forms for low- and high-frequency *R*-mode using a series of well-defined approximations

## **Dynamical Rate for Molecular Environment**

$$k_{\rm dyn} = \frac{1}{\hbar^2} \int_{-\infty}^{\infty} j(t) dt$$

$$j(t) = \left| V^{\text{el}} S^{0}_{\mu\nu} \right|^{2} \exp\left[\frac{i}{\hbar} \langle \mathcal{E} \rangle t\right]$$

$$\times \exp\left\{ \alpha^{2} \left[ C_{R}(0) + C_{R}(t) \right] - \frac{2i\alpha}{\hbar} \langle \tilde{D} \rangle^{t}_{0} C_{R}(\tau) d\tau - \frac{1}{\hbar^{2}} \int_{0}^{t} d\tau_{1} \int_{0}^{\tau_{1}} d\tau_{2} C_{\mathcal{E}}(\tau_{1} - \tau_{2}) - \frac{1}{\hbar^{2}} \int_{0}^{t} d\tau_{1} \int_{0}^{\tau_{1}} d\tau_{2} C_{D}(\tau_{1} - \tau_{2}) C_{R}(\tau_{1} - \tau_{2}) \right\}$$

Energy gap and its derivative:  $\mathcal{E}(t) = \Delta \varepsilon \left( R_{eq}, \xi(t) \right) \quad \tilde{D} = \frac{\partial \Delta \varepsilon}{\partial R} \Big|_{R=R_{eq}}$ Time correlation functions:  $C_R(t), C_{\mathcal{E}}(t), C_D(t)$ 

- Calculate quantities with classical MD on reactant surface
- Includes explicit solvent/protein environment
- Includes dynamical effects of *R*-mode and solvent/protein

Soudackov, Hatcher, SHS, JCP 2005

#### **Closed Analytical Rate Constant**

Approximations: short-time, high-T limit for solvent and quantum harmonic oscillator *R*-mode

$$k = \sum_{\mu} P_{\mu}^{\mathrm{I}} \sum_{\nu} \frac{\left| V^{\mathrm{el}} S_{\mu\nu}^{0} \right|^{2}}{\hbar^{2} \Omega} \exp\left[ \frac{2\lambda_{\alpha} \zeta}{\hbar \Omega} \right]_{-\infty}^{\infty} d\tau \exp\left[ -\chi \tau^{2} / 2 + p(\cos \tau - 1) + i(q \sin \tau + \theta \tau) \right]$$

Parameters depend on T, reorganization energies, reaction free energies, vibronic coupling exponential factor, mass and frequency of R-mode, and difference in product and reactant equilibrium R values

Rate constant expressed in terms of physically meaningful parameters but requires numerical integration over time

Soudackov, Hatcher, SHS, JCP 2005

#### High-Frequency R-mode

 $\Omega >> k_{\rm B}T$ 

$$k = \sum_{\mu} P_{\mu}^{\mathrm{I}} \sum_{\nu} \frac{\left| V^{\mathrm{el}} S_{\mu\nu}^{0} \right|^{2}}{\hbar} \sqrt{\frac{\pi}{\lambda k_{\mathrm{B}} T}} \exp\left[\frac{\lambda_{\alpha} - \lambda_{R}}{\hbar \Omega} - \alpha_{\mu\nu} \delta R\right] \exp\left[-\frac{\left(\Delta G_{\mu\nu}^{0} + \lambda\right)^{2}}{4\lambda k_{\mathrm{B}} T}\right]$$

 $\lambda_{\alpha} = \frac{\hbar^2 \alpha_{\mu\nu}^2}{2M}$  $\delta R = M \Omega^2 \delta R^2 / 2$ 

 $M, \Omega$ : mass and frequency of *R*-mode  $\alpha$ : exponential *R*-dependence of vibronic coupling  $\delta R$ : difference between product and reactant equilibrium values of *R* 

Assumption of derivation (strong-solvation limit):  $\lambda > |\Delta G^0_{\mu\nu}|$ 

In this limit, sole effect of *R*-mode on rate constant is that vibronic coupling is averaged over ground-state vibrational wavefunction of *R*-mode

For very high  $\Omega$ , use fixed-*R* rate constant expression

#### Low-Frequency R-mode

 $\Omega \ll k_{\rm B}T$ 

$$k = \sum_{\mu} P_{\mu}^{\mathrm{I}} \sum_{\nu} \frac{\left| V^{\mathrm{el}} S_{\mu\nu}^{0} \right|^{2}}{\hbar} \exp\left[ \frac{2k_{\mathrm{B}} T \alpha_{\mu\nu}^{2}}{M \Omega^{2}} \right] \sqrt{\frac{\pi}{\left(\lambda + \lambda_{\alpha}\right) k_{\mathrm{B}} T}} \exp\left[ -\frac{\left(\Delta G_{\mu\nu}^{0} + \lambda + \lambda_{\alpha}\right)^{2}}{4\left(\lambda + \lambda_{\alpha}\right) k_{\mathrm{B}} T} \right]$$

$$\lambda_{\alpha} = \frac{\hbar^2 \alpha_{\mu\nu}^2}{2M}$$

 $M, \Omega$ : mass and frequency of *R*-mode  $\alpha$ : exponential *R*-dependence of vibronic coupling

Typically  $\lambda_{\alpha} << \lambda$ 

Note: this expression assumes  $\delta R = 0$ ; a more complete expression is available

Approximate KIE  
(only ground states) KIE 
$$\approx \frac{\left|S_{H}\right|^{2}}{\left|S_{D}\right|^{2}} \exp\left\{\frac{-2k_{\rm B}T}{M\Omega^{2}}\left(\alpha_{D}^{2}-\alpha_{H}^{2}\right)\right\}$$

- T-dependence of KIE determined mainly by  $\alpha$  and  $\Omega$ :
- KIE decreases with temperature because  $\alpha_D > \alpha_H$
- Magnitude of KIE determined also by ratio of overlaps: smaller overlap → larger KIE

### **Reorganization Energies**

- Reorganization energy  $\lambda$  in previous expressions refers to solvent/protein reorganization energy (outer-sphere)
- Inner-sphere reorganization energy (intramolecular solute modes) can also be included
  - high-T limit (low-frequency modes): add inner-sphere reorganization energy to solvent reorganization energy
  - low-T limit (high-frequency modes): modified rate constant expression has been derived (Soudackov and Hammes-Schiffer, JCP 2000)
- Calculation of reorganization energies
  - Outer-sphere: dielectric continuum models or molecular dynamics simulations
  - Inner-sphere: quantum mechanical calculations on solute

### **Input Quantities**

- Reorganization energies ( $\lambda$ )
  - outer-sphere (solvent): dielectric continuum model or MD
  - inner-sphere (solute modes): QM calculations of solute
- Free energy of reaction for ground states (driving force) ( $\Delta G^0$ )
  - QM calculations or estimate from  $pK_a$ 's and redox potentials
- R-mode mass and frequency ( $M, \Omega$ )
  - QM calculation of normal modes or MD
  - *R*-mode is dominant mode that changes proton donor-acceptor distance
- Proton vibrational wavefunction overlaps ( $S_{\mu\nu}$ ,  $\alpha_{\mu\nu}$ )
  - approximate proton potentials with harmonic/Morse potentials or generate with QM methods
  - numerically calculate H vibrational wavefunctions w/ Fourier grid methods
- Electronic coupling (Vel)
  - QM calculations of electronic matrix element or splitting Note: this is a multiplicative factor that cancels for KIE calculations

#### Warnings about Prediction of Trends

Edwards, Soudackov, SHS, JPC A113, 2117 (2009)

• Experimentally challenging to change only a single parameter Examples:

Increasing *R* often decreases  $\Omega$ ; may impact KIE in opposite way Changing driving force by altering pK<sub>a</sub> can also impact *R* 

- Relative contributions from pairs of vibronic states are sensitive to parameters, H vs. D, and temperature Must perform full calculation (converging number of reactant and product vibronic states) to predict trend
- High-frequency and low-frequency *R*-mode rate constants are qualitatively different

Example:

Low-frequency expression predicts KIE decreases with T Fixed-*R* and high-frequency expressions can lead to either increase or decrease of KIE with T

#### **Driving Force Dependence**

Edwards, Soudackov, SHS, JPC A 2009; JPC B 113, 14545 (2009)

20

100

75

50

25

air Contribution [%]

with excited states

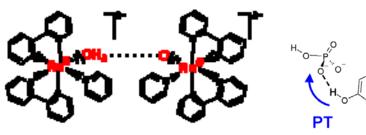
0/1

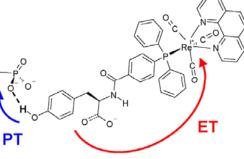
0/0

only 0/0

0/4 0/3 0/2

Free energy vs. Solvent coordinate 10<sup>7</sup> שיא<sup>רו</sup>א] וו  $-\Delta G^0 < \lambda$  $-\Delta G^0 > \lambda$ 


- Theory predicts inverted region behavior not experimentally accessible for PCET due to excited vibronic states with enhanced couplings
- -50 -30 -10 10 Apparent inverted region behavior could be  $\Delta G^{0}$  [kcal/mol] observed experimentally if changing driving force also impacts other parameters (e.g., increasing  $|\Delta pK_a|$  also increases R)


#### **Applications to PCET Reactions**

- Amidinium-carboxylate salt bridges (Nocera), JACS 1999
- Iron bi-imidazoline complexes (Mayer/Roth), JACS 2001
- Ruthenium polypyridyl complexes (Meyer/Thorp), JACS 2002
- DNA-acrylamide complexes (Sevilla), JPCB 2002
- Ruthenium-tyrosine complex (Hammarström), JACS 2003
- Soybean lipoxygenase enzyme (Klinman), JACS 2004, 2007
- Rhenium-tyrosine complex (Nocera), JACS 2007
- Quinol oxidation (Kramer), JACS 2009
- Osmium aquo complex/SAM/gold electrode (Finklea), JACS 2010

Experimental groups in parentheses, followed by journal and year of Hammes-Schiffer group application

Theory explained experimental trends in rates, KIEs, T-dependence, pH-dependence



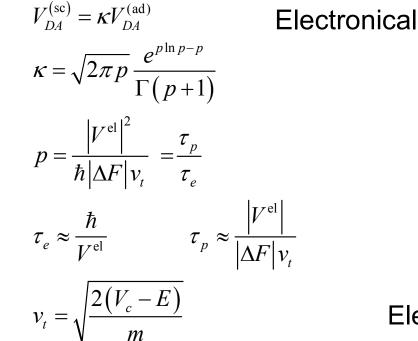


#### Distinguishing between HAT and PCET Skone, Soudackov, SHS, JACS 128, 16655 (2006)

- Overall HAT and PCET usually *vibronically nonadiabatic* since vibronic coupling much less than thermal energy:  $V_{\mu\nu} \ll k_{\rm B}T$
- PT can be electronically nonadiabatic, adiabatic, or in between, depending on relative timescales of electronic transition ( $\tau_e$ ) and proton tunneling ( $\tau_p$ )

electronically adiabatic PT: electrons respond instantaneously

to proton motion,  $\tau_e << \tau_p$ 


electronically nonadiabatic PT: electrons do not respond

instantaneously,  $\tau_e >> \tau_p$ 

HAT ↔ electronically adiabatic PT
 PCET ↔ electronically nonadiabatic PT

#### **Quantify Nonadiabaticity: Vibronic Coupling**

Georgievskii and Stuchebrukhov, JCP 2000; Skone, Soudackov, SHS, JACS 2006



Electronically nonadiabatic PT:  $\kappa \approx \sqrt{2\pi p}$ ,  $p \ll 1$ ,  $V_{DA}^{(na)} = V^{el} \left\langle \varphi_D^{(1)} \mid \varphi_A^{(2)} \right\rangle$   $\tau_p \ll \tau_e$   $\tau_p \ll \tau_e$ 

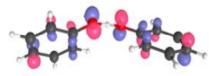
Electronically adiabatic PT:  $\kappa \approx 1, p >> 1$ 

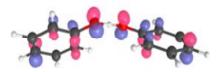
 $V_c$  : energy at crossing pointE : tunneling energy (vibrational ground state) $|\Delta F|$ :difference of slopes of potential energy curves $V^{el}$  : electronic coupling


 $V_{DA}^{(ad)} = \Delta/2$   $\tau_e < \tau_p$ 

#### **Representative Chemical Examples**

Phenoxyl/Phenol and Benzyl/Toluene self-exchange reactions DFT calculations and orbital analysis: *Mayer, Hrovat, Thomas, Borden, JACS 2002* 


> benzyl/toluene C---H---C


SOMO



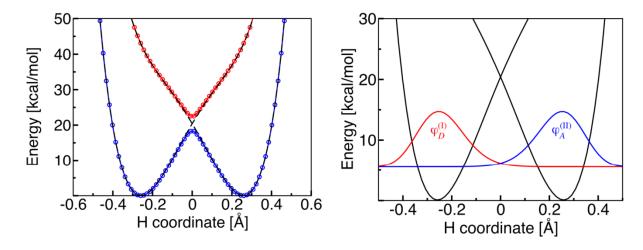
DOMO

HAT ET and PT between same orbitals phenoxyl/phenol O---H---O





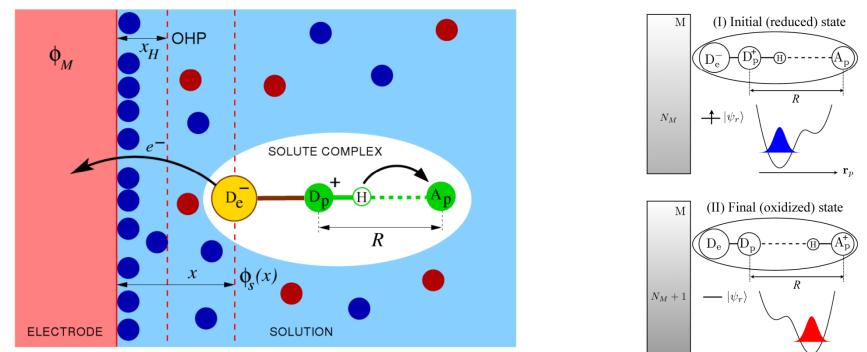
PCET ET and PT between different orbitals


#### PCET vs. HAT: Adiabaticity Parameter

Skone, Soudackov, SHS, JACS 2006

Benzyl-toluene: C---H---C, electronically adiabatic PT, HAT




Phenoxyl-phenol: O---H---O, electronically nonadiabatic PT, PCET

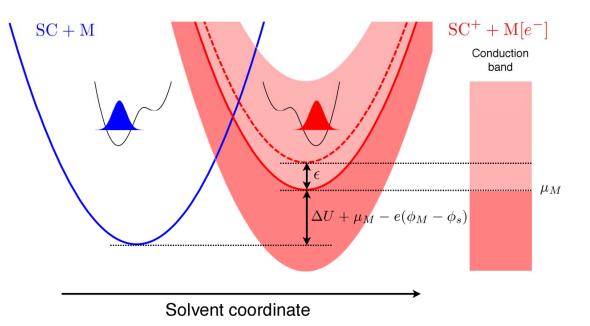


$$p \approx 0.01, \quad \tau_e \approx 80\tau_p$$
$$V^{\text{el}} = 700 \,\text{cm}^{-1}$$
$$V_{DA}^{(\text{sc})} \approx V_{DA}^{(\text{na})} = V^{\text{el}} \left\langle \varphi_D^{(1)} \mid \varphi_A^{(2)} \right\rangle$$

#### **Electrochemical PCET Theory**

Venkataraman, Soudackov, SHS, JPC C 112, 12386 (2008)




Derived expressions for current densities  $j(\eta)$ 

• Current densities obtained by explicit integration over *x* 

$$j_a = F \int_{x_H}^{\infty} dx \, C_{\rm SC}\left(x\right) k_a\left(x\right)$$

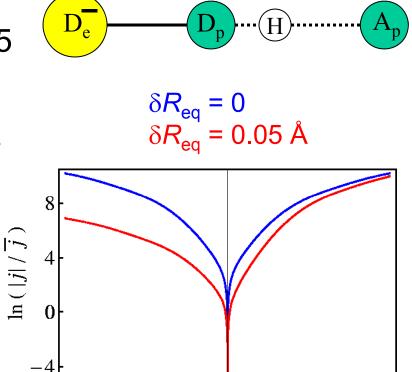
Gouy-Chapman-Stern model for double layer effects

#### **Rate Constants for Electrochemical PCET**



- Nonadiabatic transitions between electron-proton vibronic states
- Integrate transition probability over  $\varepsilon$ , weighting by Fermi distribution and density of states for metal electrode  $k_a(x) = \int d\varepsilon [1 - f(\varepsilon)] \rho(\varepsilon) W_a(x, \varepsilon)$
- Similar transition probabilities with modified reaction free energy:

$$\Delta G_{\mu\nu}(x,\varepsilon) \approx \Delta U_{\mu\nu} - \Delta U_{00} + \varepsilon - e\eta + e\phi_s(x)$$


#### **Characteristics of Electrochemical PCET**

- pH dependence: buffer titration, kinetic complexity, H-bonding
- Kinetic isotope effects
- Non-Arrhenius behavior at high T
- Asymmetries in Tafel plots,  $\alpha_T \neq 0.5$ at  $\eta=0$  (observed experimentally)

Effective activation energy contains T-dependent terms  $\pm 2\alpha_{\mu\nu}\delta R_{eq}k_{B}T$ due to change in  $R_{eq}$  upon ET; different sign for cathodic and anodic processes  $\rightarrow$ asymmetries in Tafel plots

Cathodic transfer coefficient:

 $\alpha_{\rm T}(\eta=0) \approx 0.5 - \alpha_{00} \delta R_{\rm eq} k_{\rm B} T / \Lambda_{00}$ 



0

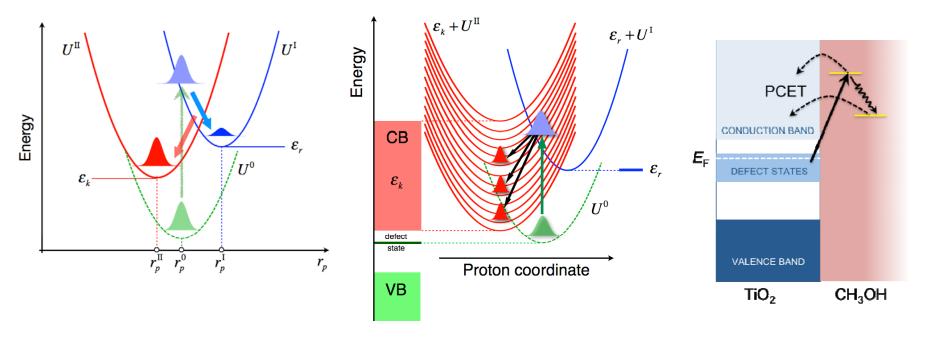
 $\eta$  (Volts)

 $R_{ec}$ 

0.5

Venkataraman, Soudackov, SHS, JPC C 2008

-0.5


-1

#### Photoinduced PCET

Venkataraman, Soudackov, SHS, JCP 131, 154502; JPC C 114, 487 (2009)

Homogeneous

Interfacial: molecule-semiconductor interface



- Developed model Hamiltonian
- Derived equations of motion for reduced density matrix elements in electron-proton vibronic basis
- Enables study of ultrafast dynamics in photoinduced processes

#### Beyond the Golden Rule

Navrotskaya and Hammes-Schiffer, JCP 131, 024112 (2009)

- Derived rate constant expressions that interpolate between golden rule and solvent-controlled limits
- Includes effects of solvent dynamics
- Golden rule limit
  - weak vibronic coupling, fast solvent relaxation
  - rate constant proportional to square of vibronic coupling, independent of solvent relaxation time
- Solvent-controlled limit
  - strong vibronic coupling, slow solvent relaxation
  - rate constant independent of vibronic coupling, increases as solvent relaxation time decreases
- Interconvert between limits by altering physical parameters
- KIE behaves differently in two limits, provides unique probe

#### webPCET http://webpcet.chem.psu.edu

- Interactive Java applets allow users to perform calculations on model PCET systems and visualize results
- Harmonic, Morse, or general proton potentials
- "Exact", fixed R, low-frequency or high-frequency R-mode rate constant expressions
- Plot dependence of rates and KIEs as function of temperature and driving force
- Analyze contributions of vibronic states
- Access via free registration





Welcome to the Proton-Coupled Electron Transfer (PCET) interactive website maintained by the Hammes-Schiffer Group in the Department of Chemistry at Pennsylvania State University. The creation and maintenance of this web site is supported by the National Science Foundation for POWERING THE PLANET: A Chemical Bonding Center in the Direct Conversion of Sunlight into Chemical Fuel.

The following pages require Java and Javascript enabled. You will also need a Java plugin installed. To proceed, click here or on the webPCET logo above.

Warning: if you are using Internet Explorer we cannot guarantee that the pages will look exactly like designed.



Department of Chemistry, Pennsylvania State University